
Antenna Laboratory Report No. 72-5

ANALYSIS OF MICROSTRIP TRANSMISSION LINES

by

Tatsuo Itoh

and

RaJ Mittra

Scientific Report

June 1972

Sponsored by
Grant No. DA-ARO-D-31-124-71-G77

U.S. Army Research Office - Durham

Partially Supported by
Grant No. NSF CK-15288

and
Grant No. NSF GK-25074

National Science Foundation - Washington, D.C.

N,, "'NA t[ 1 K .-HNiCA.
V A , . .,\T ION SLP'vItCE

Antenna Laboratory
Department of Electrical Engineering

Engineering Experiment Station
University of Illinois
Urbana, Illinois 61801

Tpproved for public release; distribution
unlimited. The findings in this report are
not to be coniti ed ws an official Depart-
ment of the Army position, unless so desig-
nated by other authorized documents.



Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and irdexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION

Department of Electrical Engineering
University of Illinois 2N GRouP

Urbana, Illinois 61801
3. REPORT TITLE

ANALYSIS OF MICROSTRIP TRANSMISSION LINES

4. OESCRIPTIVE NOTES (Type of reprt and inclu.sive dates)

Scientific Report
5. AUTHORWS) (Last name, first name, initial)

Itoh, Tatsuo
Mittra, Raj

6. REPORT DATE 70. TOTAL NO. OF PAGES

June 1972 124 43
80. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERS)

DA-ARO-D-31-124-71-G77, NSF GK-15288
b. PROJECT AND TASK NO. NSF GK-25074 Antenna Laboratory Report No. 72-5

c. 9b. OTHENRq FpORT NmsS)(A4nOyther nmers that may be
assISWa i~s report!

d. UILU-ENG-72-2543

10. AVAILABILITY/LIMITATION NOTICES

Distribution is unlimited.

II, SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U. S. Army Research Office - Durha
National Science Foundation

13. ABSTRACT

In this work a number of semirigorous and numerical techniques are
presented for analyzing the microstrip transmission line configurations.
The methods of quasi-TEM as well as hybrid-mode analyses are presented
in some detail. A discussion of the higher-order modes in such

transmission lines is also included.

In addition to analyzing the uniform line configurations, the prob-
lem of evaluating the effect of losses, end loading, etc., are examined
and methods for handling these problems are discussed.

OD FoRM 1473

Unclassified
Security Classification



Unclassified
Security Classification

rA"I'' LINK A LINK ii LINK C

KEY WOROS ROLE WT ROLE WT ROLE WT

Microstrip Transmission Line

Quasi-TEM Modes

Hybrid-Mode Analysis

Higher-Order Modes

End Loading

Numerical Techniques

Semirigorous Techniques

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address 10. AVAILABILITY/LIMITATION NOTICES: Enter any limi.
of the contractor, subcontractor, grantee, Department of tations on further dissemination of the report, other than those
Defense activity or other organization (corporate author) imposed by security classification, using standard statements
issuing the report. such .s:

2a. REPORT SECURITY CLASSIFICATION: Enter the over. (1) :'Qualified requestcrs may obtain copies of this
all security classification of the report. Indicate whether report from DDC."
"Restricted Data" is included. Marking is to be in accord- (2) "Foreign announcement and dissemination of this
ance with appropriate security regulations, report by DDC is not authorized."

2b. GROUP: Automatic downgsding is specified in DoD (3) "U. S, Government agencies may obtain copies of
Directive 5200.10 and Armed Forces andustlria Manual. this report directly from f)DC. Other qualified DDC
Enter the group number. Also, when applicable, show that users shall request through
optional markings have been used for Group 3 and Group 4as authorized. - ..

an OT T. Eeteo eeertein all (4) "U. S. military agencies may obtain copies of this
3. REPORT TITLE: Enter the complete report title directly from D . Other qualifted users
capital letters. Titles in all cases should be unclassified. sha21 request through
If a meaningful title cannot be selected without classilica.
tion, show title classification in all capitals in parenthesis .Q
immediately following the title. (5) "All distribution of this report is controlled. Quai.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of fied DDC users shall request through
report. e.6.. interim, progress, summary, annual, or final. ."
Give the inclusive dates when a specific reporting period is If the report has been furnished to the Office of Technical
covered. Services, Department of Commerce, for sale to the public. indt.

5. AUTHOR(S): Enter thie name(s) of author(s) as shown on cate this fact and enter the price, if known.
or in the report. Enter last name, first name, middle initial.
If military, nshow rank and branch of service. The name of 11. SUPPLEMENTARY NOTES: Use fez additional explana-
the principal Author is anabsolute minimum requirement. tor/ notes.
6. REPOr. r DATE- Enter the date of the report as day, 12. SPONSORING MILIl ARY ACTIVITY: Enter the name of
month. year, or month. year. If more than one date dppeays the departmental project office or laboratory spon soring (pay.
mon the report, yse date of publicortion e ing for) the research and development. Include address.
oa. The AL report O F date S: ofe pl tion. a 13. ABSTRACT: Enter an abstract giving a brief and factual

7a. TOTAL NUMBER OF PAES: The total page count summar of the document indicative of the report, even
should follow normal pagination procedures, i.e.. enter the .hough it may also appear elsewhere in the body of the tech.
number of pages containig information. nicalreport. If additional space is required, a continuation
7b. NUMBER OF REFERENCES: Enter the total number of sheet shall be attached.
references cited in the report. It is highly desirable that the abstract of classified re.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter ports be unclassified. Each paragraph of the abstract shall
the applicable number of the contract or grant under which end with an indication of the military security classification
the report was written, of the information in the paragraph, represented as ITS). (S),

8b. 8c, & 8d. PROJECT NUMBER: Enter the appropriate I(C). or (U).

military department identification, such as project number, There is no limitation on the length of the abstract. Ilow.

subproject number, system numbers, task number, etc. ever, the suggested length is from 150 to 225 words.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- 14, KEY WORDS: Key words are technically meaningful terms
cial report number by which the document will be identified or short phrases that characterize a report and may be used as
and controlled by the originating activity. This number must index entries for cataloging the report. Key words must be
be unique to this report. selected so that no security classlfication is required. Identi.
9b. OTHER REPORT NUMBER(S): If the report has been liers, such as equipment model designation, trade name, mili-
assigned iny other report numbers (either by the originator tary project code nanme, geographic location, may be used as
or by the sponsor), also enter this number(s). key words but will be followed by an indication of technical

context. The asiignment of links, rules, and weights is
optionsa.

Unclassified
Se'-urity Clasification

m • mNwr m m d -



UILU-ENG-72-2543

Antenna Laboratory Report No. 72-5

ANALYSIS OF MICROSTRIP TRANSMISSION LINES

by

Tatsuo Itoh

and

Raj Mittra

Scientific Report

June 1972

Sponsored by
Grant No. DA-ARO-D-31-124-71-G77

U.S. Army Research Office - Durham

Partially Supported by
Grant No. NSF GK-15288

and
Grant No. NSF GK-25074

National Science Foundation - Washington, D.C,

Antenna Laboratory
Department of Electrical Engineering

Engineering Experiment Statlon
University of Illinois
Urbana, Illinois 61801

/



ABSTRACT

In this work a number of semirigorous and numerical techniques

are presented for analyzing the microstrip transmission line corfigurations.

The methods of quasi-TEM as well as hybrid-mode analyses are presented

in some detail. A discussion of the higher-order modes in such

transmission lines is also included.

In addition to analyzing the uniform line configurations, the

problem of evaluating the effect of losses, end loading, etc., are

examined and methods for handling these problems are discussed.'S
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I. INTRODUCTION

The microstrip line as it is found today in microwave integrated

circuit designs represents the second generation of printed transmission

lines. The original version, called the stripline, was introduced

around 1949, more than two decades ago! As early as 1955, a

special issue of IRE, published .In March 1955 as Transactions on

Microwave Theory and Techniques, was devoted entirely to the subject

of microwave strip circuits. The topics covered in this issue included

the analysis of strip transmission lines, computation of mutual

impedance of coupled lines, radiation effects, evaluation of discontinuity

effects, as well as several other related subjects. Though much interest

was expressed in this new form of line for a few years immediately after

its introduction, :ts use in microwave design did not become very popular

until quite rc ... t.y when new, low-loss dielectric and ferrite substrate

materials becane available. The evolution of the stripline led to

several different versions of the microstrip line, viz., open, shielded,

and boxed lines, all of which make use of dielectric or ferrite

materials as low-loss substrate.

In this work we will be concerned with the analysis of several

of the above configurations of the microstrip line. We will describe

a number of semianalytical and numerical techniques that have been

developed for analyzing these lines. It is interesting to point out

that the conformal mapping technique used extensively in the fifties

to analyze the stripline is not conveniently applied to the microstrip

line, since the latter is an inhomogeneously filled structure. However,

a, will be shown in Section I1, a modified version of the conformal



mapping technique can still be used to derive an approximate but

accurate solution to the microstrip problem.

Two other important factors have prompted the development of

new techniques for analyzing the microstrip line. The first of

these i3 the advent of high-speed digital computers that have made

it possible to apply numerically rigorous techniques to the solution

of electromagnetic and quasi-static boundary value problems. The

second factor is the increasing use of microstrip lines in the giga-

hertz frequency range where the effect of dispersion in the line is

no longer negligible. This, in turn, requires a full hybrid-mode

analysis of the boundary value problem. The method of formulation

as well as the solution of such problems differs substantially from

the TEM or quasi-TEM approach, which are valid at lower frequencies.

We will illustrate this point more fully in Section III, where we

will present a hybrid-mode analysis of the microstrip line. Finally,

the problems of evaluating the effects of end-loading, discontinuities,

and losses in the microstrip line, etc., also require the development

of techniques that have to be tailor-made for such problems. A

discussion of these problems is also included in the following

sections.

The topics covered in this work have been and still appear to

remain very popular subjects for publications, as evidenced by the

prolific number of papers published in the microwave literature. It

is physically impossible even to attempt to describe all of the

contributions that have appeared in the literature during the past

five years on the analysis of microstrip lines and related problems.

We will only present herein a discussion of some of the representative



techniques and outline the basic principles underlying the

proceduies. The reader interested in additional details on a

particular method is advised to consult the original publications

which are referenced in this work.

3



II. QUASI-TEM ANALYSIS FOR MICROSTRIP LINE STRUCTURE

2.1 Preliminary Discussion

Having presented a brief historical review, we will now proceed to

discuss a number of quasi-TEM techniques suitable for theoretically

determining characteristics of the microstrip line. As will be evident

later, these analyses are valid only in the low frequency range where

the free-space wavelength is much larger than the strip width and the thick-

ness of the substrate. A more complete analysis, valid for arbitrary

operating frequencies, will be presented later.

Figure 1 shows some typical cross sections of microstrip-type

transmission lines. Before we proceed with the details, however,

it will be useful to explain why the quasi-TEM analysis is restricted

to the low-frequency region only. Though the comments are applicable

to all of the geometries shown in Figure 1, we will illustrate our

argument by reference to the structure shown in Figure la. The electric

and magnetic field components of the characteristic solution in this

structure may be expressed in terms of a scalar potential # which is

required to satisfy

2 2 2 0V + (k -2)p O in the air, (la)
t

V2 + (e - 2 0 in the substrate, (lb)
tr

where k = 2W/X is the free-space wavenumber, and $ is the propagation

constant. In the limit of r = 1, the lowest-order solution for (1)r

is TEM with 0 = k. For this limiting case, the poLputial 4 satisfies

the Laplace equation in the cross section and does no. ge:,crate longitudinal

4
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(b) (d)

Figure 1. Cross section of some microstrip-type transmission lines.
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electric or magnetic field components. For the practical case of

C # 1, Equation (ib) may be regarded as a perturbation of the limiting
r

case c = 1. The effect of this perturbationL is small when the
r

operating frequency, i. e., k is small. The quasi-TEM approximation

may then be regarded as a zero-order solution to the exact equations

shown in (1). Though much simplification in the analysis results with

the use of the quasi-TEM approximation, it should be kept in mind that

the results obtained via this-method are- not accurate for larger values

of k.

Under the TEM approximation, the microstrip line is adequately

described in terms of two basic parameters, viz., the characteristic

impedance Z and the propagation constant y. It is well known that

for a low-loss transmission line

S + R G(2)

y = a + ja (3a)

vL R GSe~~ = 2 (T + _), 8 L-C (b

where R, G, L, C are the resistance, conductance, inductance, and

capacitance per unit length, respectively, of the infinitely long

transmission line; w is the angular frequency;' and a and 6 are the

attenuation and phase constants, respectively. For a lossless line

R = G = 0, and hence, a = O,and Z = iL7• is a real quantity. The

values of 0 and Z can also be expressed in terms of the phase velocity

v = l/v_ as

8 = W/v, Z = 1/(vC). (4)

6
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It should be mentioned that dispersion effects are neglected in the TEM

approximation; hence, the phase velocity is equal to the group velocity.

Next we will show that for the lossless TEM system the boundary

value problem associated with the determination of a (and Z) reduces

to that of calculating the capacitance per unit length C. Consider the

two configurations of the microstiip line shown in Figure la. Note

that one of these has a dielectric substrate with relative permittivity

r while the companion structure is a homogeneous TEM line obtained by

removing the substrate, i. e., by letting Cr = 1. It is easy to show

that for the latter case

B0 = WIc, z° = l/(cCo) (5)

where c is the velocity of light in free space. The subscript 0 in

(5) serves to distinguish the line from the inhomogeneous microstrip

line in which E r 1. If the substrate is nonmagnetic, the value ofr

L, the inductance per unit length, is assumed to be identical for both

lines. Hence

C
z z o1 _C 1

0

(6)
Z=Z = C

co

where Z° and B° are given by (5). Equation (6) implies that Z and B

are obtainable from the capacitance per unit length, C and C 0 , of the

microstrip and unloaded lines.

Next we will describe a number of quasi-TEM techniques for

evaluating the capacitance of microstrip lines of the type shown in

7



Figure 1. The discussion below will include material from a number

of papers that have appeared in the literature since 1965. As-mentioned

earlier, a more rigorous analysis based upon the hybrid-mode approach

will be presented in a lazer section.

2.2 Modified Conformal Mapping Method

This method was introduced by Wheeler (1965) for computing the

capacitance per unit length of microstrip lines of the type shown

in Figure la. The concept of the so-called "filling factor," also

introduced by Wheeler, is considered to be a rather convenient and

useful way of describing the parameters of microstrip structures.

The right half of the cross section of the microstrip line is

shown in Figure 2 where a magnetic wall is placed along the axis of

symmetry, the y-axis. The strip thickness is assumed to be infinitesimally

small.

The first step in Wheeler's technique entails the application of

conformal mapping to the geometry under consideration with the result

that a simpler, parallel-plate geometry is obtained in the new domain.

For the wide strip, the mapping function is chosen to be

z j + d tanh- z' - z (7)

with d g' for g'/2 >> 1 where g' is the effective width of the

parallel plate in the mapped plane shown in Figure 3a.

Note that the mapping from z to z' transforms the original

microstrip line into a parallel-plate structure bounded by two

vertical magnetic sidewalls (x' = 0 and g'). Also, the planar dielectric-

air interface(3 -Q in Figure 2 maps into a curved surface(•3-O in

8



z - plane

x + y =z

xy
IA

b7 DIELECTRIC BOUNDARY

4K

Figure 2. Cross section of the right-hand half of an open microstrip line.
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z'- plane
+• I+ j yI= ZI

4 4

0 a' g

iT S
y

:i!(b) I

(I X

o a' g

Figure 3. Cross section of the open microstrip line after conformal
mapping and its appr=oximations.
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Figure 3a. Although the, geometr.y in the transformed plahe is seemingly

simpler to analyze, it should. be -realized- that the space between "the

parallel plates is now inhomogeneously filled with a dielectric which

has a curved boundary. Since an exact solution is difficult to obtain

for the partially filled capacitor problem in Figure 3a,, it is necessary

,at this stage to introduce some approximations. In Wheeler's approach,

the approximation is introduced in -the following manner. Let the

area enclosed by the curve•Q •(, and the linesO- ( and & -2 in

Figure 3a be ns'. Let this-area be, approximated by two rectangles with

areas its" and ir(s' - s") as shown in Figure 3b. The area 7ts" effectively

adds s" to the width of the completely filled region on the right

(a' < x' < g') and hence is termed the "parallel" portion. The other

area ir(s' - s") is effectively in series with the free-space region

is . Combining these two effects we can approximately replace theo

original, partially filled rectangular region bounded byGG@D in

Figure 3a by an equivalent geometry(; shown in Figure 3c, in

which the dielectric filling has the width s. It is obvious that the

capacitance calculation is straightforward in the equivalent geometry

due to the planar nature of the dielectric filling.

The effective width s may be expressed as

s =s1 + s' - s" (9)
r

The effective filling factor can be defined by

q = •' - a' + sg, 1 (9)

The effective dielectric constant c eff may now be expressed in terms

of the filling factor q via the relation

IU



£eff = (-q) + q . (10)

Finally, the capacitance per unit length is given by C = Ceff where Co

is the capacitance per unit length of the unloaded TEM line. It is

evident that the problem is now reduced to that of deriving approximate

values of the quantities s', s", or q.

An approximate expression for wide strips has been provided by

Wheeler that reads

s' = 0.732 [a' - cosh-i(0.358 cosh a' + 0.953)] (1la)

s" = .0.386- 1/2(d - 1). (llb)

The effective dielectric constant E eff can be derived by the use of

(11) in (8), (9), and (10). Also, he has shown that in the case of

narrow strips, the effective dielectric constant is given by

S+ 1 g'( - 1) 1-( + r
aeff 2 2+[£ni1/2 +- n4/i]. (12)

2.3 Finite-Difference Method (Relaxation Method)

This method is strictly a numerical technique for determining the

cross-sectional field distribution; this knowledge allows one to compute

the desired characteristic parameters of the transmission line. The

essential step in this method is to quantize the unknown field distribution

at discrete intersections of coordinate grids called the net-points or

mesh-points. The relaxation method is a numerical algorithm for solving

the unknowns at a large grid of the net-points by applying the method

of successive approximations.

Figure 4a shows a portion of the distribution of such net-points.

Let the potential at the net-point A be A' Now let the potential

12



y+h E

y DA B

y-h C
x-h x x+h

(a)

E

AB

(b)

Figure 4. Net-points for finite difference approximation.
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O(x, y) be ekPianded fn Taylor's series about the point A to find the

potentials at the adjacent net-pointn B, C, D- and- E, the expressions

raad

+ h_2 I+ -0(.h)

A h2 .ýC h(aý) +L h2' Ia 2/A 0 h

A yA 2! ay, 2A
(13)

h-.H h 2 + O(h)4

D AA +h h2  y2 +(
A 'yA

where O(h4) implies the terms in h4 and higher. Adding the above

expressions for the potentials, we obtain the equation

+ €C+ D + C 4A + h 2 2 + + 0(h 4 ). (14)Sx2 y2'
!i C E A x 2 y

Utilizing the fact that the potential 4 satisfies Laplace's equation,

we note that the coefficient of h2 in the right-hand side of (14) is zero

Further, if we neglect the terms of O(h 4), Equation (14) reduces to

=ý 4ý + (15)
CA =4" (B + C +D + E)'(

The numerical solution to this equation can be obtained by

systematically assuming the net-point potential at each of the points

where the potential is unknown, numerically testing the residual error

in this assumption, and using the residual error in the following

way to update the assumed potential. The pertinent equations for

applying the relaxation method are

14
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- .~(n)
_(n) .(n) ( n) +.,(n) + ,.(n) + (n)• (16a)

A A -(4 B +C D E

(n+l) (n) _ cz (n) (16b)
4A A A

where the quantities with superscript n are to be associated with the
th _(n) i h ocle

values obtained after the n iteration and rA is the so-called
A

residual at the net-point A. Equation (16b) represents the updated

estimate of the net-point potential for the (n+l)th iteration and the

constant a is called the accelerating factor. The iteration equationis

in (16) are repeatedly used until the values of the residual r(n) become

A

smaller than some prescribed value for all the net points.

The iteration method is convergent as long as 0 < a < 2. The

range 0 < a < 1 is referredto asunderrelaxation whereas I < a < 2

is called the range of overrelaxation for the acceleration factor.

The convergence of the procedure is most rapid for a somewhere between

1 and 2 (Green, 1965) and the iterative procedu"e with a in this range

is referred to in the literature as the method of successive over-

relaxation (SOR).

The expression for the potential re:juires a modification at the

interface between air and the dielectric substrate (see Figure 4b).

The appropriate equation to use instead of (15) (Green, 1965) is

=1 1

•A 4 B D 2B + D+ 2( + )+ (E + + ). (17)

Finite difference equations at the various boundary points have been

tabulated by Green (1965) and some general discussion can be found

in a paper by Wexler (1969). Interested readers are encouraged to

consult these publications for further details.

15
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It is worthwhile to mention that the method of solution of

Equation (15) is by no means the only one available to us. In fact

one can derive a matrix equation of the form

11
00

a.. 4,. b. (18)

0 . . .

by applying either (15) or its variants [e.g. (14) 1] to all of the

net points in the cross section. The matrix equation (18) can now

be inverted to obtain the solution. However, the disadvantage of this

approach is that a large coefficient matri:, is required to obtain a

reasonably accurate solution. Furthermore, since a large number of

the elements of the coefficient matrix are zero, the matrix is very

sparse; the direct inversion of Equation (18) is numerically inferior

to the SOR technique.

Once the potential at each net-point is calculated, it is relatively

straightforward to calculate the capacitance of the line.

One uses the formula

Q f p R~ =f itý (19)

L L

for calculating the charge per unit length where L is the contour sur-

rounding the center strip, n is the outward normal, and c r is unity

if the net-point is in the air and equal to the relative permittivity of the

dielectric otherwise Equation (19)maybewritten in a discretized forr

as

16
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Qeh (hn) p (20a)

S i~l 1

B A
= 2h " (20b)

In this case-, the prime on the summation in (20a) indicates that the first and

the last terms in the summation are to be halved in order to approximate

the line integral by the trapezoidal rule, The summation over s

implies that the contour is subdivided into s straight sections. The

point Pi is taken along the dotted line (contour) shown in Figure 5

(Green, 1965). The capacitance per unit length is readily obtained

from the value of Q by using

SQ £-(21)
Vt

where Vt is the potential difference between the strip and the ground

plane. To evaluate the characteristic parameters, say the characteristic

impedance Z and the phase constant a, we need to calculate C for the
1 0

case where the substrate is removed. Equation (6) may then be used

to obtain Z and 6.

Figure 6 shows a few examples of calculated curves (Stinehelfer,

1968) of Z for the microstrip line enclosed in a shield (see Figure

lb), For comparison purposes, Wheeler's results for a flat (open)

microstrip line are also shown in Figure 6,

2.4 Variational Method in the Fourier Transform Domain

This method, which uses a combination of variational technique

and the Fourier transform approach, was first introduced by Yamashita

and Mittra in 1968 for calculating the characteristic parameters of

17
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Figure 5. Surface of integration for calculating the total charge on the
strip conductor.
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microstrip lines and other related structures (Yamashita and Mittra,

1968; Yamashita, 1968). It has been shown by the above authors that

the method is numerically very efficient,

For the sake of illustration we consider the shielded double-

layer microstrip line shown in Figure 7. The conventional microstrip

line may be obtained from this structure by letting £1 = £29 3 =C 3

and d - •, where el, e, and E3 are the relative dielectric constants.

Once again we will compute the capacitance per unit length along

the uniform microstrip line. To this end, we first write Poisson's

equation for the potential distribution 4(x, y) in the cross-sectional

area of the line. For an infinitely thin strip,

-I p(x) 6(y - h - s - p)

(21)

p(x) = 0 lxi > w/2

where p(x) is the charge distribution on the strip, c is the permittivity,

and 6 is the Dirac delta function. Initially it is assumed that the

spacing between the center strip and the dielectric sheet is p. The

original structure is recovered by letting p - 0 after applying the

interface and boundary conditions. This artifice is convenient for

separating the boundary condition at the dielectric interface and the

continuity condition at y = h + s.

Next, we introduce the Fourier transform viL the equation

?w = f f(x) ej dx (22)r -00

and transform Equation (21) into the form

d B2)"O(B, y) - - I (6)6(y - h - s - p) (23)

dy2

20
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Figure 7. Shielded double-layer microstrip line.
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where •(B, y) is the Fourier transform of p(x, y) and •(B) is the

transform of p(x).

The general solution for y 0 h + s + p is a combination of

exp(By) and exp(-Oy). For the limiting case of d -* -, only the

exp(-ay) type of solution is retained in the unbounded region.

Returning to the case of finite d, the boundary and interface conditions

for the transformed potential are given by

( 0) = 0 (24a)

* h+0) = ý(6, h-0) (24b)

Sy h+) = d T,( h-0) (24c)

4((, h+s+O) = h+s-0) (24d)

C ~+)=e* d -u U, hs-- 2e~3 dy hs0= 2 dy hý.-) 2e

h+s+p+0) (, h+s+p-0) (24f)

** d -v lx
C3 0- , h+s+p+0) = e h+s+p-0) - -(s)

(24g)

1(0, h+s+d) = 0 . (24h)

After incorporating these boundary conditions into the general

representation of the solutions, we obtain a set of linear inhomogeneous

equations for the unknown coefficients of potential functions. Letting

p -) 0 the solution for the potential on the strip is found to be

•(6, h+s) = •- •(s) (10) (25)
0

where E is the free-space permittivity and

22



E 1 coth(IaIh) + e2 coth(181s)
g(a)--2

101{e* coth(jalh)[e 3 coth(lald)+e* coth(OIIs)l+C2 [C2 +6 3 coth(jgId)coth(I13s)])

(26)

The quantity given by (26) is actually the transform of the Green's

function evaluated at y = h + s. Also, the product appearing on the

right-hand side in (25) corresponds to the convolution integral in

the space domain. To compare Equation (25) with the corresponding

equation in the space domain, the companion equation is included

w/2

,"h+s) =-if p(x')g(x, x'; h+s, h+s)dx'.

.-w/ 2 (27)

The value of the line capacitance, which is the desired quantity,can

be obtained in the following manner from the variational expression.

In the space domain we have
w/ 2

1 f w/2 p(x) c(x, h+s)dx (28)

Q< -w/2

where

w/2

Q = f p(x)dx (29)

-w/2

is the total charge on the strip per unit length. Using Parseval's

formula, Equation (28) can be converted into the transform domain

00

1 f 1 J"($ h+s)dO. (30)
C 2nQ2 _ 'j

The above formula is numerically more efficient to handle than the

corresponding space domain version (28), because 4 in (30) is just

a product of two functions while 0 in (28) is a convolution integral

23



/

represented by (27). This is, in fact, the major advantage to be

gained by the use of the transform technique.

So far, we have considered only an infinitely thin strip.

However, it is possible to approximately extend the method to the

case of finite t providing t is not too large. This is done by replacing

0(0, h+s) in (30) by the average of •(8, h+s)and •(8, h+s+t) where

O(8, h+s+t) is the potential distribution at y = h + s + t. The

expression for the transform of this potential is

(, h+s+t) sinh[8(d- t h+s). (31)
Ssinh( 8 d) ''

The line capacitance may now be expressed as

00

1 21TQ2  f ( '(6, h+s) i(O) d8 (32)

where

1 sinh[ Bl(d - t)] (33)
h(8) = {l+ ainh( 8 d)

The final form of the line capacitance including the strip thickness

is

1Q f I[(8)]2 g(8) h(8) d8. (34)

The unloaded line capacitance C is obtained by letting

S* 2 =£3 C 1 in (34).

Although P(8) is still unknown, the variational nature of (34)

introduces only a second-order error when an approximate form of

p(8) is substituted into it. Since the stationary expression (34)

gives an upper bound of l/C, the calculated value of C is always

24
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smaller than the correct value. Hence the choice of P(G) that

maximizes the value of C clearly yields the result that is closest

to the exact value for the capacitance. Several trial functions for

this problem have been tested by Yamashita and Mittra (1968) and

Yamashita (1968),and numerical results have been reported for two

different trial functions. These are

XI 3< x<-IxI, 27- -27
(1) p(x) = (35a)

0 otherwise

p(a) 2 sin(a w/2) sinQ( w/4) (35b)
Q a w12 [ 8 w/4

(1+ 12x/w 13, -w•j x -x 2
(2) p(x) = (36a)

otherwise

( 8) / sin($ w/2) + 12 cos (0 w/2)
Q 5 a w/ 2 J 5(0 w/2)2c

2 sin(6 w/2) sin2 ( w/4) (- 8 w/2 + ).(36b)a /2(a w/4) 2 '

Figures 8-12 present the numerical results for the microstrip

lines where ei = e2 = C C 3 = 1 and d * •. The trial function in

(35b) has been used for computing these data. Figure 9 presents a

comparison of the results obtained by this process with those of

Wheeler. In addition, a comparison with the experimental results

obtained by Arditi (1955), Dukes (1956), and Hyltin (1965) is

exhibited in Figures 10 and 12. Numerical results for the shielded

microstrip line were calculated using the expression in Equation (36b)

for the trial charge distribution. These data are presented in

Figures 13-16. Typical computation time was less than 10 seconds

on an IBM 7094 computer.
25
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Figure 9. Calculated result for characteristic impedance and comparison
with the results by Wheeler (1965).
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Figure 11. Guide wavelength versus strip width and strip height.
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Figure 12. iheoretical and experimental results for the effect of strip
thickness on characteristic impedance with c* = 11.7. The
experimental results are those of Hyltin (1965).
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Figurc 13. The calculated characteristic impedance. * = 9.9 (Sapphire);
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Figure 14. The calculated characteristic impedance. c* 9.9 (Sapphire);
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Figure 15. The calculated guide wavelength. e* = 9.9 (Sapphire); C* 1;
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Figure 16. The calculated guide wavelength. c= 9.9 (Sapphire); 3 ;
s = 0; t 0.02h.
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Before terminating this discussion, it will be useful to present

a systematic procedure for improving the approximate solution for the

charge distribution. This is accomplished via the application of

Galerkin's method or Rayleigh-Ritz procedure in the transform domain

(Ward, Mittra, and Itoh, 1971). The procedure is outlined in the following.

Let us first rewrite Equation (25) as follows

h+s) -h+s) = - P(8) g() (37)
0

where

w/2

Ya, h+s) = f O(x, h+s) ej~ dx (38a)

- /2

-w/ 2

0(0, h+s) = f(x, h+s) e dx + f(x, h+s)e dx.

-CO w/ 2

(38b)

It should be noted that is known since O(x, h+s) is given for

lxi < w/2 on the strip. However 0 , the transform of ixj ' w/2, is not known

since O(x, h+s) is as yet unknown for Nxi > w/2 (outside the strip).

The next step is to apply Galerkin's method to Equation (37). To this
end v(B) is enpanded in terms of known basis functions p\n() with the

fole n g 6 wt h
following unknown weight coefficients

n. NP• (s) = I C n P n() (39)

n=l

We choose the basis functions n (8) such that their inverse transforms

have finite support in the space domain, i. e.,

cc

n 21T J P(8) d8$ ) 0 xi >w/2.

(40)
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Next Equation (39) is substituted into (37) and the inner product is

taken of both sides of the resultant equation with n n = 1, 2, • •

This leads to the following matrix equation

N
bm =nI Kmn Cn m = 1, 2, • • N (41)

n=1

where

C w/2
bm J m(0) ',(a, h+s)da -- J m(X)4i(x, h+s)dx

-0 -w/2 (42a)

m0 f m()dO (42b)

00

It should be mentioned that (42a) has been derived via the use of

Parseval's formula. An application of this formula helps to eliminate

unknown po which is no longer present in (42a). The integral of the

product p0 and pm does not contribute to (42a) because the inverse

transforms of these functions are nonzero in complementing regions

only, and hence their product is identically zero.

The next step in the solution is to invert the matrix Equation (41)

and solve for the coefficients c . The line capacitance can then be

obtained in terms of the c by using the formula

SN w/2
C • c I n(x)dx (43)

C V nI n-w/2

where V is the potential difference between the strip and the groundt

plane.

It is well known that the expression in (43) gives a stationary

value of C and that the accuracy of the result may be improved by
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increasing N. Experience has shown that the increase in the accuracy

is usually rather slow after initial improvement when N is increased

from a very small value.

2.5 Integral Equation Method

So far we have discussed three different techniques for determining

the characteristics of the microstrip line. Two of these, viz., the

modified conformal mapping and the variational methods find their

principal use in the cases where the center strip is thin. However,

for some practical microwave integrated circuit structures, the effect

of finite thickness of the center strip cannot be neglected.

Since the relaxation method is principally a numerical technique,

it can be applied to the case of the arbitrarily thick center strip.

However, as mentioned earlier, the drawback of this method is that

its numerical convergence is rather slow.

In this section, an integral equation approach will be presented

that can be used to solve the thick-strip problem in a numerically

efficient manner (Yamashita and Atsuki, 1970). Consider the cross

section of the transmission line shown in Figure 17. The potential

satisfies the Poisson's equation.

V2(x, y)= - l(x, y). (44)

t C

Define a Green's function G(x, y,; x, YO) via

V2G(x, y; xo, yo) = - -I- 6(x - x ) 6(y - y) (45)
t 0 0 00

where G satisfies the same boundary and continuity conditions except

for the source condition. The Green's function is the potential at
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Figure 17. Cross-sectional view of thick-strip transmission line with
multi-dielectric layers and shielding structure.
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the point (x, y) due to a unit charge located at x 0 YO). Applying

the superposition principle, the potential function 4(x, y) in (44)

may be expressed as

4(x, y) = f G(x, y; x, Yo)p(xo, YO)dRo (46)

where the integral is defined over the conductor surface,

To find the Green's function we proceed as follows: First, we

expand the Green's function in a Fourier series in the x-coordinate,

Next, the partial differential equation (45) is reduced to a set of

ordinary differential equations of the variable y. The solution of

each ordinary differential equation in each region of dielectric

materials is a linear combination of hyperbolic functions, When the

boundary and interface conditions are applied to each of these solutions,

the amplitude coefficients of these functions generate a set of linear

inhomogeneous equations which are subsequently solved for the unknown

amplitude coefficients. Substituting these coefficients in the equation

for the Green's function completes the derivation of the desired

expression for the Green's function. When the source located in the

range h1 + h2 ý yo < b and the boundary condition at the outer conductor

is G = 0, the expression for the Green's function is given by (Yamashita

and Atsuki, 1970, 1971)

G(x, y;xo, y) 2 n (o 1 112) ni(b - y)
on •n(h3) sinh [ ]0n0=1 n~e ha

n- 3 n 3

nnx
-sin ( - ) ) sin ( - ), h + h < y y baa 1 2-o 0

A 2 n n(y 0h h2) nh (b y 0

n Ir * n(h) snh [ a
n1lM 3 n 3a

nnx o ,nwx•
-sin ( ) sin - h + h2 - y b

37 (47)



where

** nirh 1  nirh2  _

A (y) C €2 cosh ( 1) cosh (- ) sinh ( aY)
n 12a a a

** nirh nrh2
+ ee sinh (- ) cosh (--) cosh ( niy)2 3 a a a

*2 nih niih 2  ___

+ C2 cosh ( - ) sinh co-) sh ( nrYa
3 1a a

+ 2sinh (-hl) sinh (-)h sinh ('f
2a a a

(48)

The representations of the Green's functions for the first- and second-

dielectric regions have been omitted here as they are not needed for

subsequent derivation.

By following the conventional methods for deriving the integral

equation for the charge distribution, one arrives at the desired equation

4(x, y) = V = f G(x, y; xo, yo)0(xo, YO)do"

(49)

The equation can now be transformed into a matrix form by the conventional

discretization procedure. The results obtained by solving this matrix

equation are presented in Figure 18.

Typical computation time of the characteristic impedance per one

structure is about 30 seconds when the strip conductor was divided into

30 sections (Yamashita and Atsuki, 1971).

2.6 Generalized Wiener-Hopf Techniques

In contrast to some other approaches, the method to be described

However the interested reader may find the pertinent expressions in
Yamashita and Atsuki (1970).
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below is useful for deriving accurate numerical results for both the

charge and the potential distributionsfor the microstrip line shown

in Figure 7, The technique was presented in a recent paper by MiLtra

and Itoh (1970). The starting point is the equation for the charge

distribution p in the transformed domain. This equation, which was

derived earlier in Section 2.6, is reproduced here for reference

"purposes. The transformed equation reads

E- P(B)g(0) = (0, h+s). (25)
Eo

0

A semirigorous rather than variational method for solving this

equation will now be discussed. Note first of all that the potential

of the center strip is one volt. Thus, we can write the potential

function at y = h + s, i. e,, in the plane of the strip, in the form

4(x, h+s) h(x - -) U(x - ') + (U(x + K) - TJ(x - •)] + h(-x - w) U(-x -

(50)

where h(x) is an unknown function representing the potential distribution

at y = h + s for Ixi > w/2. Also, U(x) is the unit step function with

the usual definition u(x) = i, x :- 1 and zero, otherwise. The Fourier

transform of 4(x, h+s) can now be written as

Ca, h+s) = 2 sn(8w/2) + ew/ 2 H + (0) + eJ W/2H+(-+ )

(51)

where H+(0) is the Fourier transform pf h(x)U(x), The subscript +

has been introduced to indicate that H+ (8) is regular in the upper half

of the complex $-plane. We also pote that in view of the syumnetry

in the space domain 4 is symmetric in a in the transform domain.

Substituting (51) in (25) we get
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g (8) 2 sin(6 w/2) +e jw/2 H+(6) + e-jBw/2 H+(-B) (52)
C +

0

which is the desired equation to be solved for the two unknowns p(8)

and H+(B). This can be done by an extension of the Wiener-Hopf

technique introduced by Mictra and Lee (1971). In order to extract

the solution for the two unknowns from a single equation, we must make

use of certain additional information available to us. First, P(3),

which is the Fourier transform of a function with a finite support

in the x domain,must be regular in the entire finite region of the

complex 8-plane, Second, the other unknown H +(8) must have all of its

singularities only in the lower half of the 8- plane. We will now

show how these analyticicy properties of the functions involved may

be put to advantageous use for constructing a matrix equation that

is capable of yielding accurate solutions in an efficient manner,

As a first step, g(6) is rewritten as follows

S82

0g() = K 0 H (53)
n=l

•n

where K is a known constant; I (a n 0, 1 ( ) n 0 1 (y n 0, no mnnm n n

are the pole; and ! n' :Yn are zeros of (8), Since both P(8) and

the first term of the right-hand side of (52) are regular in the finite part

of the 8-plane, the lower half-plane singularities at 8 = -a cf the

left-hand side of (52) must coincide with the poles of H+(8) Likewise,

tne singularities at 8 = +a must be coincident with the poles of H+(-8).n

Furthermore, H+(8) and H +(-8) can have no other singularities.
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Substituting (53) in (52) and evaluating both sides of the

resultant equation at 6 a Bm, a = Y m m 1, 2, • • • we obtain

o C 00 C_n +n = m
a n L (54a)

n1 n m n=l n m m

m = 1,2, • * o

Cn + Y Jn = (54b)
Sn an-Ym+y JYm

n=l n n= n m

where

j$w jyw
S=e m = e (55)

The solutions of the simultaneous equation of the type (54) have

been discussed in a number of recent publications (Mittra and Itoh,

1970, 1972; Mittra and Lee, 1971) and will not be elaborated on.

The essential step in deriving the solution entails the construction

of a complex function f(w) with the following properties:

(a) f(w) has simple poles at w= a , n 1, 2,. * • and at

W = 0;

(b) f(6m) + mf(-0m 0

Im 1, 2, • • cc

f'm) + g f(-Ym) = 0;

(c) f(w) %, IWV-3/ 2 for 10! ;

(d) the residue of f(w) at w 0, say Rf(0), is -j. If such a

function is available, then

c = Rf (an). (56)
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The function f(w) may be expressed as (Mittra and Itoh, 1970)

f(w) = Kf (w)P(w) (57a)

f (w) e F k57b)

n=l (-n

where K is a constant determinable by the application of condition (d)

above, and P(w) is

F G
n + ' nP(w) 1 i+ w w (58

n=l 1 --- n=l 1 - -
n n

F and G are as yet undetermined. The factor eLw in (57b), in which
n n

L is a known constant, ensures the algebraic nature of f (w), viz.,
0

f (w) iwi -(3/2) as IwI

There still remains the task of determining the infinitely many

unknown constants F and G . However, the summation in (58) can be
n n

effectively truncated at a finite number, say n N, with N small,

because ) and &m decrease exponentially with m as 6 and m have positivem m m

imaginary paits. Hence, for n , N, the condition (b) can be satisfied

by f(Bm) = f(ym) = 0. There are now 2N unknowns F and G Thesem m n n

may be obtained by substituting f(w' in the condition (b) followed

by the inversion of the resultant matrix equation for F and GC
n n

Typically, highly accurate solutions are obtained with a matrix size

2N equal to 10 or less. This is due mainly to the fact that the

asymptotic nature of the function f(w) is incorporated in the solutiun

process making the series representation a highly convergent one

Once the function f(w) has been generated, c can be obtained byS~n

taking the residues of f(w) at w = a. H () and i(B) may be readily
n' +
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obtained once the coefficients c are known. The potential distribution,n

e. g. at y = h, and the charge distribution on the strip are obtained

by taking the inverse transforms, specifically

O janx
h(x) c -j• n e (59)

It=l

P (x + j ( [_e[) + e
F K f

0 0 n=1 I

On n

Figure 19 shows the potential and charge distribution in the shielded

microstrip line (Mittra and Itoh, 1970) . For a shielded line (60)

becomes

-P(z) +I 3 + o 0 1Elm f( m [(w/ 2) +x ] j(w/2)-x]
h- + d- -Th (-ie +h n=l

3Ym jym[(w/2)+x] jy m [(w/2)-x

+-- f(-ym) e + e1. (61)

The infinite series in (59), (60), or (61) converges very efficiently

because of the decaying exponential multicative factors appearing

in the summanation terms. It is interesting to note that the first

two terms in (61) correspond to the parallel plate capacitance while

the infinite summation represents the edge capacitance. Thus, the

fringing effect is accurately estimated by the application of this

method.
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Furthermore, a knowledge of the rate of fall-off of the potential

away from the center strip is useful in estimating the coupling

between two adjacent lines on the same substrate.
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III. WAVE THEORY ANALYSIS OF MICROSTRIP LINES

3.1 Preliminary Discussion

In the last section a number of quasi-TEM techniques were presented

for calculating the characteristic parameters of microstrip lines.

However, strictly speaking, since the wave velocity in the dielectric

is different from that in free space, it is not possible to support

a TEM mode in the structure, In fact, one can show that not even

pure TE or TM modes can exist in the structure but that it can

only support a hybrid mode (i. e. , one in wiich both the longitudinal

electric and magnetic components are nonzero) This can be seen

rather easily from the following consideration Consider the cross

Ssection of a shielded microstrip line shown in Figute 20. If the

center strip is removed from the waveguide, it reduces to a partially

filled guide that can support longitudinal section electric (LSE) or

longitudinal section magnetic (LSM) types of mode (see for instance

Collin, 1960), but not a pure TE or TM mode. The insertion of the

center strip in the waveguide causes currents to flow in both the x-

and z- directions on this strip. These, in turn, serve to couple the

LSE and LSM modes so that the final mode configuration in the shielded

microstrip line is hybrid in nature.

Although this fact has been ?ecognized for quite some time

(Deschamps, 1954; Wu, 1957), a rigorous full-wave analysis of the

dispersion characteristics of the microstrip line was not carried out

until quite recently. The following paragraphs will describe a

number of these full-wave techniques suitable for calculating the

dispersion characteristics of microstrip lines at arbitrary frequencies.
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We will begin with the hybrid-mode analysis of the shielded

version of the microstrip line and follow this with a discussion of

the open microstrip line. The important steps in this analysis are

(i) Representation of the field components in terms of E-

and H- type of scalar potentials;

(ii) Application of boundary and interface conditions to the

field components;

(iii) Derivation of a characteristic equation for the propagation

constant in the guide; and finally,

(iv) Solution of the characteristic E.quation and computation of

the dispersion (k - 8) diagram.

3.2 Shielded Microstrip Lines

Figure 20 shows the cross section of the shielded microstrip

line. The center strip is assumed to be infinitely thin and

perfectly conducting. In addition, the dielectric material and the

metal shielding are assumed to be lossless. It is well known that

the hybrid field components can be expressed in terms of a super-

position of the TE and TM fields, which are, in turn, derivable from

scalar potentials T (e) and T(M) (Harrington, 1961). The total field

can be written as follows:

Ezi = k
H (h (x, y) ej~z (62a)

i z =i Jc 8 h) y) e-~ (62b)

zi T i
= (e) -j6z _ o _• (h) -a

TEti V Te) (x, y) e- T x Vt h (x, y)e-Jz(62c)
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- • ^ (e) e-j z (h)(x y) O-z

H = z x VT (x, y) e + V7T (x, y) e . (62d)
ti t 1ti

The parameter a in the above equation is the unknown propagation constant,

2 is the z-directed unit vector, w is the operating frequency

kI = W rývIo7o , k2 = UVEo1 , (63)

er is the relative dielectric constant of the substrate, and e and

1o are the permittivity and permeability of free space, respectively.

The subscript t in Equation (62) denotes the transverse coordinate

variables x and y and the superscripts (e) and (h) are to be associated

with the TM and TE types of fields, respectively. The subscripts i = 1, 2

serve to designate the regions 1 (substrate) or 2 (air).

From the symmetry of the structure, it is clear that two orthogonal

sets of modes exist, one of which has a symmetric E and an antisymmetricz

H component (Ez even - H odd) while the other is characterized by E odd -

H even. The dominant mode is the lowest order E even - H odd mode which
z z z

approaches the quasi-TEM solution for low frequencies. In what follows

we consider only the E even - H odd modes, although the methodsz z

presented here are equally applicable to the other types of modes as well.

3.2.1 Various methods for solving the shielded microstrip lines

(a) Integral Equation Method

The scalar potentials T (e) and T(h)satisfy the two-dimensional
i i

wave equation in region 1 and 2 as well as the requirement that the

total tangential electric field derived from them vanish on the

metallic periphery of the box. An additional boundary condition is

that '.he total tangential magnetic fields vanish at the plane of
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symmetry x = 0. In view of the boundary conditions on the side

walls, it is appropriate to write

- s(e)(1)
1 n sinh a yCos kX (64a)

e)= • B~e sinhcJ( 2 ) (h -y) cos kx (64b)
2l n n n

e)= A(h)cosh (1)ysinkx (64c)

i n~l n nn

T 2 B(h) cosh a 1n (h - y) sin kx (64d)

n=l

where k =[n - (1/2)] ii/L,
n

S(h) A2 +( 2  k 2

n n ro
a(2 = j// + 82 k k2,

n n o

with k = w /TTFthe free-space wavenumber. The coefficients

A(e) A(h) B(e) (h)
n A n n , and Bn are as yet unknown.

The total fields derived from T (e) and T(h) must satisfy thei

interface conditions at y = d. Imposing these on the symmetry

conditions with respect to the y axis, one arrives at the following

four conditions which are mutually independent.

(1) E E 0 < x < L
zl z2 < L

(2) E =E 2  < x < L

(3) (a) El = 0 0 < x < t

(b) Hxl H2 t x < L
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(4) (a) ExI =0 0 <x< t

(b) H 1z =FHz 2  0 < x <L.

These conditions are now imposed on the field components derived

from (62) and (64). By using continuity requirements at y = d and

applying the conditions that E and E vanish on the center strip,z x

one obtains a pair of coupled homogeneous Fredholm integral equations

of the first kind (Zysman and Varon, 1969). These are given by

SG0 1 t ^L ^
I [ n ( f) hl( ) cos kn dý + G(2)(n f h2()) sin k n d]sin k x = 0

nL1 o0 t
(65a)

t L L
I [G n f h cos khn td + G n h2(W sin k nd )cos k x =0.

(65b)

Here G(i)(0),i = 1, 2, 3, 4 are known functions of 0, and the
n

functions h1 (9) and h2 (g) are unknown functions of 9. These

equations may be transformed into a matrix equation algorithm. The roots

of the determinantal 'equation of the resulting matrix may be

sought with the aid of a digital computer to yield the desired values

of 0.

(b) Singular Integral Equation Method

The singular integral equation method is known to provide

efficient solutions to a number of diffraction grating and waveguide

discontinuity problems, e. g., an iris diaphragm in a waveguide.

Recently, it has been shown that this technique can be advantageously

employed to solve the problem of dispersion in a shielded microstrip

line (Mittra and Itoh, 1971). The beginning stages of formulation

in this method are identical to the one presented in the previous

section; in fact, the starting point of this method is Equation (64)
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S~of the last section. However, from that point on, the singular

integral equation method deviates fundamentally from the conventional

integral equation approach. A matrix equation is also derived in

this method but it is totally different in character and much more

efficient for extracting numerical solutions than the one obtained

from (65).

The first step in the singular integral equation approach is

to employ the conditions (1) and (2) to express B~e and B~h in terms
n n

I of A~e)and A~h. The imposition of conditions (23) and (4) then

n n
leads to the following coupled equations for the coefficients X(e)

n

and (n)
!• and

[ x(e) cosk x = 00< x <t (66a)

n1l n n

nl n n n n n n n n
n1n~l (66b)

t <x<L

e)k sin k x- h) ksin k x = 0< x t (66c)

n1l n n n n=l n n n

'5 (e)n QnB sin knX - [ 5(h)nWn(B) siniknx =0

n1 n n=l (66d)

tt•

where

5(e) = A(e) sinh Q(l) d (67a)

n n n
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4, (1)

X(h) (h)sinh a(1)d (67b)n B n n

n

and Pn (), T n(), Qn (), and W (B) are expressed as follows:

a ( 11, -_ 2 a (2)
P (a) = e ^n coth akl~d +Er -n _coth a (2)t (h -d)

n n n nn
-2 kn(2r-2)(2

+ = knrcoth ()d -a (thd) (68a)

r 2 1) n

< n

T (a) = a 2 n ohal~d + kn coth a (2)(h - d (68b)n[(2 ncorN2) n
n n

-2k l- '2

n r coth Cin (h - d) (68c)

-2n n

n

Sr kn (i)d k n (2)W() - coth a d + - coth (h (d) (68d)
n a-) (( (h

n n

where B 8/ko0 is the normalized propagation constant.

s At this point Equation (66) may be transformed into an infinite
set of homogeneous simultaneous equations for r(e) and t(h) via the

n n
conventional technique of taking a scalar product with a complete

set of functions appropriate for the various ranges in x. The

solution for 0 may then be determined by seeking the zeros of the

determinant associated with the above matrix equation.

'Re will, however, depart from this conventional procedure and

instead transform (66) into an auxiliary set of equations with

rapid convergence properties. To this end, (66a) is first differentiated

with respect to x and the resultant equation is substituted into (66c).
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This yields

e) k sin k x = 0 0 < x < t (69a)n--1 n n n

ý h) j sin k x = 0 0 < x < t (69b)
n-1 n n n

Similarly, differentiating (66d) with respect to x, we have, after

some rearrangement

e) n k cos k x = f(x) t < x < L (70a)n=1 n

h)I n k cos k nx = g(x) t < x < L (70b)

n=l n n n

where

f(x) = (aA-(e) + b T(h)) cos kx
mwl m m m

g(x) = I(c A(e) + d A(h)) cosk x
mI=l m m m

and

Si P(8)W(B) - T(8)Qm(B)

11 PBWB - J()Qý (71a)

T (a)W(a) - T(a3)W (B)b = M : (71b)i m P(6)W(a) - T(B)Q(8)

A P(O)Qm(A ) - PM(0)Q(B)

SP(O)W(a ) - T(B)Q(S ) 1
d(O) W - (B) - T Q)a)
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The functions P(O), T($), Q(0), and W(a) are the asymptotic limits of P (

T m(), Qm(0), and W (a) as m ÷ '. Explicitly,m m im

Pr = e r + (72a)
22 T2

T(O) = 20 (72b)

rQ = r (72c)

C -0T

W(O) = 2+ 1. (72d)

It should be pointed out that Equations (69) cud (70) -ce similar to

those obtained in connection with the quasi-static formulation of the iris

discontinuity problems in a waveguide (Lewin, 1966). Their most important

characteristic is that the pairs (69a), (70a) and (69b), (70b) are exactly

invertible via a singular integral equation approach. That is, it is

possible to express the coefficients ,(e) and X(h) in terms of integrals
n n

involving functions in the right-hand side, viz. f(x), g(x). In the

capacitive discontinuity problem, the right-hand side is known and the

unknown coefficients are determined in this manner. In the present case

the functions f(x) and g(x) themselves contain the unknowns X(e) and
n

T(h) and the result of the inversion of (69) and (70) is a homogeneous
n

set of equations, leading in turn to an eigenvalue equation.

Following the standard technique of solving the singular integral

equations with the requirement that the tangential E fields are zero on the

strip, we obtain the following equations:

l (kp - amD - 1MK )A(e) - I (bnD + NnKp)XAh= 0
in=l p PM m pm m p m n1l n pn n p n

(73a)
p = 1, 2, • .

(-c D X Kq)Ae) (kq6 -dD -YK)Ah)=0
in~ m mq m n q qqn n qn n q n (7b

m=l m qm X n ( q nq
n~l (73b)

q 1, 2,
where 6 is the Kronecker delta, and all other quantities are as follows:

pm L

D f fm(x) sin k x dx
nm n

t
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L lix
2 2f cos TL

n = f sin 6 sin kn x dx

t

f (X) C2 Mx M-P sin qe- P cos l
m L 2Lo• q P mq mo sin "

The relation between x and e is given by

cos !x 1( it 1 ( it + Cos 0;
L 2s(s - 1) + (cos L

the coefficients P are
mq

m-i cos k x
X P cos qO m

q=0 mq cos k1x

All other quantities Mm, Nm Xm, and Y are constants proportional

to am, bm, Cm, and d m. The detailed derivations of these quantities

may be found in Mittra and Itoh (1971).

The solutions of the determinantal equation corresponding to

(73) are the desired values of 8 - the propagation constant.

Although (73) comprises a doubly infinite set of equations, we can

truncate the associated matrix to a small size since am, b, cm, d

as well as M , N , X , and Y decrease extremely rapidly with m.

This can be seen by observing that the asymptotic behavior of these

coefficients predicts an exponential decay. For instance, a containsm

difference terms of the type P(a) - Pm () and Q(e) - Qm () in the

numerator. For large m,

cz(1)(2
m (1) (2)P() - P () = r 1 m coth a(d + e, 1 - cothc (h - dSk Mk,;r\ m m / \ )

(2m - i)Tr d] + exp (2m - l)ir ( - d1)-22 +)

The behavior of Q(B) - Q (0) is similar and it follows that a
M m

decays exponentially for large m. Similar comment, apply to the other
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coefficients as well.

As will be demonstrated shortly, retaining only a single

equation from each set is sufficient for accurate computation of

numerical results. Using the fact that D = 0 (Mittra and Itoh,

1971), the determinantal equation of the truncated set may be

explicitly written as

^ - * - -- - 2 0 (4

D(B) = [kI -M1(8) Kl][kI - Y(8) KI] -Ni() XI K1 = 0. (7

Clearly, this equation is much easier to handle than the

determinantal equation of a large-order matrix that results from

conventional processing of (65). Though the derivation of (74)

requires advance analytical processing, this effort is more than

compensated for by the numerical efficiency that results due to

the simplicity of the characterl-tic equation.

(c) Fourier Analysis Method

In this method, the imposition of the interface conditions to

Equation (64) is carried out as follows (Hornsby and Gopinath, 1969a):

The continuity condition on E for 0 < x < L is satisfied by choosing
Z

(k2 ) A(e)sinh (1)d =(k -2_2 B(e) sinh a(2)(h d)
n n n 2  n n -d)

(75)

The remaining interface conditions (2) - (4) [see paragraph following

Equation (64)] can be satisfied by equating the functions F1 , F2,

and F to zero. These functions are given by

aH
FI(x) = {(H 1 - H 2 ) D(x) + (1 z i - D(x)]} (76a)

z z y y=d

DH
F2 (x) = ((H 1 - H 2 ) D(x) +-z [1 - D(x)]} (76b)

2yl y2 ay yS~y=d
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F(x0 = {(H -H2) D(x) +E [i - D(x)]} (76c)
3 x X2 y=d

where D(x) is a function which is zero on the strip and unity outside oi

the strip. The required conditions are met by constructing a complete

set of functions and requiring each Fi(x), i = 1,2,3 to be orthogonal

to every member of the set. A suitable complete set of functions

may be chosen as

min mx mi___x

sin MX Icos -j- m = 0, 1, 2,

and the orthogonality condition is

L sin
F.(x) (F) dx = O i = 1, 2, 3. (77)

-L l cos

(e) an ,(h)In the actual computation the infinite series in IP(. and Yh), given1

by (64), are truncated at some finite value of n, say N. Substituting

the expressions for F. (x) into Equation (77) and performing the

necessary differentiations and integrations, there results a homogeneous

set of 3(N + 1)/2 linear equations for the unknowns A(e) , A (h), and

B(h). In order for a nontrivial solution to exist, the determinantn

of the coefficient matrix must vanish. Since this matrix is a known

function of B, the dispersion relation can be derived by seeking the

value of 6 that makes the determinant vanish. In actual calculation

by Hornsby and Gopinath (1969a), N was chosen to be 10 and 20, The

deviation between these two choices of N \'as found to be less than

2 per cent.

(d) Finite Differente Method

The finite-difference method, which was discussed in connection with

the quasi-TEM solution of the microstrip line problem, can be easily
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extended to apply to the shielded microstrip line being investigated

in this section (Hornsby and Gopinath, 1969b). As a first step toward

applying the finite difference method to this problem, the cross

section of the microstrip line shown in Figure 20 is discretized into

a lattice form with the separation between the adjacent net-points

equalling Ax and Ay in the x- and y-directions, respectively. Next,

one defines the discretized potentials as

T(e) = (mAx, nay), T(h) T (h) (mAx' nay)
mn mn

and uses these definitions in the wave equations

2 (e) 2 2 (e)
V t T ki a)T 0(7)

= 1., 2

V2 T(h) + (k2 a 82) T (h) (78b)

This leads to the discretized equations of the form

(e)= 2(1 + R2) e -(e) .(e) _ R2 (e) 2 (e)ki mn Tmn - m+l,n - m-l,n m,n+l m,n-i

(79a)

X.T h) =2(1 + R 2  T h) T (h) T keh) R R2 T(h) R 2 T (h)

1 mn mn m+l,n m-l,n m,n+l ni,n-1

(79b)

where

X, 2 (k 2 a2 2 R WAY.

The expressions in (79) are appropriate for the interior net-points.

The boundary conditions and the resulting equations must be modified

when applied to the net-points that are located on the boundary or

at the interface.

After properly applying the discretized version of the wave equation
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and the boundary or interface conditions at all of the net-points, one

obtains a matrix equation of the form

Aý = X0 (80)

where 4 is a vector whose elements are or and A is X. with
mn mn I

i = 1 or 2. The coefficient matrix A is sparse and has the size

2(MN - 1) x 2(MN - 1) where MAx = L, NAy = h. The matrix eigenvalue

equation (80) can be solved by one of several standard algorithms,

e. g., the relaxation method.

As pointed out earlier, there are two main advantages of this

method: (i) the algorithm is straightforward; (ii) it requires

a negligible amount of analytical preprocessing. However, the

disadvantage is that the size of the matrix which has to be inverted

is rather large. In fact, in using this method, Hornsby and Gopinath

(1969b) worked with a matrix size of 100 x 100 or larger, but the

results they obtained were not comparable in accuracy to those derived

by using a much smaller size matrix equation formulated by one of the

other methods described earlier.

(e) Mode-Matching Method

The method, to be presented below, has been developed by Kowalski

and Pregla (1971) and is capable of handling the case of the finitely

thick center strip.

The cross section of the right-hand half of the microstrip line is

subdivided into five subdivisions, as shown in Figure 21.
',. (e.n ()i h th

The E- and H-type scalar potentials Ti(e) and Th) in the t

region can be written as follows:
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Figure 21. Cross section of the right-hand half '~the microstrip line with
a finitely thick strip conductor.
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N+1 (1) (()h = n A sin xCosn (y - h) (81a)
n=I n n

1 I B cos x sin (1) (81b)
n=l n n+l n1+1 (81-

(h) N+I (1) (2)
2 {Cncosn n (x -L) cosnn (y -h) + C cosn (x -L)n=l nn •

Cos )(2) (y h)1 (81c)• Si~ 1 
nnn

Se 
{Dn sin (n+l (x - L) sin n(1) (y - h) + D sin C(x - L)n=l n

sin (2) - h)) (81d)

(h) N+1 o (2) (2) (2)3 E co n (x - L) cos n n (y - d) + F cos ((x - L)n=1 nn n •n

sin n(2) (y - d)} (81e)

Ne ((2)( (2) ,)S({G sin - L) sin (2 d) + H sin L(2) ) -)3 n=l n nlx nlY-n n+l

Csn(2) (y - d) }
• cosnn+ (81f)

where

(1) (k - - n(1) 2 1/2 (82a)
n0 nl

nn(1) (ýn I) 7)T

n h- d -L (82b)

(2) n 1-
n = L - t (82c)

n(2) (k• 2 2 ý(2)2.)1/2(8d
n 0 n

k is the free-space wavenumber and 8 is the unknown propagation

constant in the guide. The scalar potentials in regions 4 and 5 can
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-- - f, Th

be similarly written with coefficients n Qn, R n, Rn, Sn, and Tn . The

wavenumbers in the x- and y-directions are denoted by n I n ( 2) -()n

and -(2) and are defined as followsn

-() (k2 -2 _ n(1)2 )/2 (83a)•n 0 n )(8a

-(1) =(n -i)
(83b)n d

-(2) (ek2  B2 (2)2 1/2
n = ( o -k 0 a ' (83c)

It should be noted that in Equation (81), N of the TM components

and N + 1 of the TE components have been retained. It should also

be noted that the tangential electric field derived from the scalar

potentials in region 2 satisfies the boundary conditions of the guide

periphery BCD as well as at the point I for any coefficients C, n • *, n

The next step is to match the tangential field components across

the interfaces between the regions and take inner products with a

suitable set of orthogonal basis functions. The appropriate basis

functions are

sin (n M~y) , d + A < y h, x = t(8 asi ()(84a)

cos

sin ((2)x), y = d, d + A, t < x

n
cos

cos l y), 0 <y d, x = t. (84c)

The above procedure leads to a homogeneous set of equations for

the unknown coefficients A, n • • T . Since the orthogonal functions
n n

are identical to those used in the series expansion of the scalar
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potentials, many of the submatrices in the matrix equation become

diagonal. Hence, it is possible to eliminate certain sets of

coefficients without having to invert the entire matrix. After

eliminating all of the coefficients except Cn, Dn, Qn' and R n one

obtains a (4N + 2) x (4N + 2) matrix which is the final equation

to be solved.

In the actual calculations by Kowalski and Pregla (1971), N = 10

was found to give a reasonable accuracy. The convergence of the solution

was checked by increasing the matrix size up to N = 20.

3.2.2 Numerical results

In this section we will present a few representative numerical

results obtained by the various techniques described in earlier

sections. Refer to Figure 22 which shows the numerical results obtained

by Mittra and Itoh (1971), and by Hornsby and Gopinath (1969b). The

effect of dispersion is evident at high frequencies where the k -

diagram deviates from the linear curve representing the quasi-TEM

solution. The variation of the guide wavelength with respect to frequency

is plotted in Figure 23 for a number of different dielectric materials.

The theoretical results on this curve have been obtained by Zysman

and Varon (1969) and Mittra and Itoh (1971). The experimental results

are for an open microstrip line and are included here for convenience

of comparison. It is seen from Figure 23 that the guide wavelength

converges to the quasi-TEM value at low frequencies and approaches

the wavelength in the substrate material as the frequencies increased.

An ingenious empirical equation for the normalized wavelength

of the lowest-order mode in the microstrip line has been developed

"by Schneider (1972). His equation reads
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+/C

9 1 eef "ýn(85)
"0 f 2+l1'o E• r E:f f n

where

f -1 (86a)

nX
0

r + r -+ cr

2eff 2 i (86b)

and A is the free-space wavelength.

Before closing this section it will be useful to offer some

numerical evidence that the hybrid mode solution approaches the

quasi-TEM limit as the frequency is decreased. Refer to Figure 24 which

shows the magnitude of the ratio of the longitudinal to the transverse

electric field components as a function of frequency (Loadholt, Mittra,

and Itoh, 1971). It is evident that this ratio continues to decrease

as the frequencies decrease such that in the low frequency limit

the solution approaches the quasi-TEM form which has zero longitudinal

field components.

3.3 Open Microstrip Line

Having discussed the shielded and boxed versions of the microstrip

line,we will now present a number of techniques for analyzing the

open microstrip line shown in Figure 25. Even when an open microstrip

line is placed in a shielded environment, the effect of the enclosure

may be negligible in the event that the walls are far removed from the

center strip. In this case the open microstrip line solution corresponds
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to a good approximation of the solution for the enclosed case. Of course,

the open microstrip line is an important structure in its own right; it will

therefore be useful to discuss the details of the solution for this structure

particularly since some of the methods to be described below (the integral

equation method, Galerkin's method) are sufficiently different from the ones

employed for the other microstrip structures considered earlier.

3.3.1 Integral equation method

An integral equation formulation for this problem has been given by

Denlinger (1971) and the development presented below will be based on his

work. The starting point in this method is Equation (62) from which it is

possible to represent all of the field components in terms of the E- and H-

type scalar potentials. However, in contrast to the closed region problems,

the scalar potentials Y(e) and TP.h) can no longer be expressed in series1 1

forms,as the geometry under consideration is infinite in the x direction.

(See Figure 25.) It is necessary instead to express the potential in an

integral form as follows

00
T 1(e)(.x, ) 1 f '"(,_ (a, y) e-jox d(7a)
i 27r -O (

h (h) e
(h) (x) y) = f '. (a, y) e da (87b)
i 27 i

and where i 1, 2 designate the region 1 (substrate) and 2 (air),

respectively. It can easily be seen that the transform potentials satisfy

"the following differential equations

ddy- - y() (eix' y) 0 (88a)

d 2_ 2) (h)(a" y) = 0 (88b)

dy2 Yi 1 

(
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where

2 2 + 2 2

Yi= a + -k i =1, 2 (89)

2 2
k • CVrCopo (90a)
2I 2

k2 W2 C . (90b)
2 00

The next step is to write the following solutions for the transformed

potential in the various regions involved

=e1(a, y) A(a) sinh yly (91a)

Se)(a, y) = B(a) exp[-y (y - d)] (91b)

1h) (a, y) = C(a) coshyly (91c)

~(h)
Th2)(, y) D(a) exp[-y 2 (y - d)]. (91d)

Note that the above representations satisfy the appropriate boundary

conditions at y = 0 and the radiation condition at y ÷ +0. The unknown

coefficients A(a), B(a), C(a), and D(a), will be determined by applying

the following continuity conditions at the interface y = d in the

Fourier transform domain.

xl x2

Ez(a, d) - Hz2 (a, d) = (a) (92c)

where and are the Fourier transforms of unknown current components

Z1 z2

72H 1(,d 2(,d a 9c



on the strip. Application of the continuity conditions (92) leads

to four simultaneous equations from which the coefficients, A(a),

B(a), C(a), and D(a), can be obtained in terms of the two components

of current on the strip and the unknown propagation constant $. The

expressions for the real field quantities can then be derived by the

use of (87) and (62).

We now return to the space domain (x, y) and apply the final

boundary condition. on the strip in the form

Ez2(x, d) = 0 (93a)

(xi < w/2.% d
dy Hz 2 (x, d) = 0 (93b)

The use of these equations allows us to represent Ez2 and Hz2 in terms

of the coefficients B(a) and D(a) only.

CO k22 a 2

Ez2 (xJ B()) exp[-y 2(y-d) ]exp(-.jax)da

(94a)

Hz2 (x, d) = D(a) expf-y 2 (y-d)]exp(-jax)da.

CO -(94b)

The coefficients B(a) and D(a) are, in turn, expressed in terms of
.x.

3J(a) apd J (a) as followsx z

B (a) 1 b + b J (a) + - bl 2 J (a)

I +(95a)
D(a +1aS

D[aF b +-b ]J (a) +-L adet 1[21 k 2 6 2 11 x det 1 z
1 (95b)

where
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2 2

b'oI Y2  k 2b

b12 =---- +P 2tanh lry 2 2 2

kI

b 12 +r k 2  12 d]

b 0Y1 [ Y2 + ek2 - ~ d

21 e Y' r 2 2o J

1

det =b blb22 - b12b21

FI = Pop tan yld.
1 j(k - 82) 1

Our objective is to derive a set of equations for the unknowns J3 (a)x

and J (a). This is accomplished by substituting (95) into (94) and
z

applying the boundary conditions (93) to (94) resulting in the follo,,ing

coupled integral equations for the two current components.

I f Gl(a, 8) 1x(a) e-jaxda + I f G (a, 0)1 (a) e-jX da= 0
xo-0 11 x zo -00 12 z

(96a)
Co Co

Ix f f G21(a, 8) Ix (a) e-jXda + Izo f G 22(a 8) Iz(a) ejXd = 0
-- 00 -00

-w/2 < x -w/2 (96b)

where

G ( 2 b1 2 ] (97a)
11, det [Fb22 +k 2- 82

b12
G 12(a, 8) = (97b)

G2 1 (a, 8) = F d b2 1 + k2  82 b1 l] (97c)

1

Y2bl1
G22(a, 8) det (97d)

J(a) = I (a) (98a)

(a) = I I (a). (98b)
z go z
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For simplicity, we have used a one-term approximation for the unknown

current distributions and have written them in the form of (98a) and

(98b). We have also assumed that I and I have known formsandx z

the only unknowns in their representation are the amplitude coefficients

I and.I)xo ZO"

The unknown propagation constant 0 can now be solved by

equating the determinant of the coefficient matrix for the unknowns

I and I to zero. Obviously, within the one-term approximationxo zo

being used here the results are critically dependent on the choice of

the forms of the current distribution. The distribution chosen by

Denlinger (1971) is in the following form.

2 _2
( 2 24 + 3[(cw) - 8] MY .(aw) 12] (aw)

Z 1 (aw) 3  (a W) 3 cos (- )+w) 2 sin 2

(99a)

rsin Gl(a) sin G2 (a2) + cos 0.4 G3 (a) - cos 0.5 G (a)

Ix~a G1 (o) G G2 (a) +G30

cos 0.4 G 4((a) - cos 0.5 G4(
+ G4() 99b)

where

G (a), G2 (a) = 0.4 ( 0.-- w)

G3((a), G4((a) = aw - 5Ti.

Equations (99) are the Fourier transforms of
1i+ i2x, 3x w/2

Z 6 otherwise

sin 07-x x< 0.8 w/2
0.7w

I (x) Cos 0x 0.8 w/2 < x < w/2,

0 2 otherwise
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It may be noted that the trial distribution for 'he current I (x) in

Denlinger's work is identical to that used by Yamashita (1968) for

calculating the quasi-TEM line capacitance.

When the strip width is small as compared to the wavelength, i. e.,

w/X < 0.1, and when we are considering the lowest order hybrid mode, it

is a good approximation to neglect the transverse current and to

satisfy (93) only at the center of the strip. The above implies that

the boundary condition on the strip is imposed only at the midpoint

x = 0 instead of the entire range -w/2 < x < w/2. This artifice allows

one to reduce the coupled pair of integral equations (96) into a

single integral equation containing the unknowa propagation constant

ý as a parameter. Note t'aat the above approximation also implies the

setting of I equal to 2,ero and x = 0 in (96a). In addition, Equationxo

(96h) now becomes trivi.al by virtue of the fact that G211z is an odd

function of a.

This approximation is made because a complete solution of the

coupled pair of integral equations (96) requires a rather largo

amount of computer time. Nevertheless some test calculations have

been carried out using the complete equations in (96), and it his

been found that the approximate solution obtained by letting Ixo equal

zero is in excellent agreement with the more exact solution, in the

zero frequency limit as well as in the finite but moderate frequency

range. This is true as long as the normalized strip with w/X is less

than 0.1.

Fi?,:re 26 shows the dispersion diagram computed by the single

integral equation approximation. The definition of Eeff is (N / A)2

where X is the guide wavelength. A study of the curve shows that its
Sg
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behavior agrees quite well with the experimental results of Hartwig,

Masse and Pucel (1968) even beyond the frequency range over which the

transverse current is negligible. The curves also show that the

effective dielectric constant apnroaches e in the high frequency

limit, indicating that at high frequencies all of the energy tends to

be confined in the dielectric substrate. Recall that this phenomenon

is similar to the one observed in the case of the shielded microstrip

line discussed in the previous section.

3.3.2 Galerkin's method in the Fourier transform domain

In the previous section we discussed a solution of the coupled

integral equations for the open microstrip line. An inherent step

in the solution was the assumption of a suitable form for the components of the

current on the center strip. Obviouisly, the result obtained by this

method is critically dependent upon the accuracy of the assumed forms

of the distribution for the currents. A method is now presented for

circumventing this difficulty and systematically solving for the currents

to the desired degree of accuracy. The method is basically a modification

of Galerkin's appraoch adapted for application in the Fourier transform

domain, developed by Itoh and Mittra (1971a). It is quite similar to

the one discussed earlier in Section 2.4 in connection with th.4 derivation

of line capacitance in the quasi-TEM approximation.

We start with Equation (95) which relates the unknown coefficients

B(a) and D(a) in terms of the two current components Jx (a) and J zM.

Rather than applying the boundary condition (93) on the strip in the

space domain as was done in the previous section, we impose this condition

in the Fourier transform domain instead. As a first step we rewrite

(93) as
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S0 -w/2 < x < w/2

Ez2(x, d) k 2 - 2 (100a)

j 2 u(x), otherwise

0 -w/2 < x < w/2

) (x d)- (100b)
jk 2  v(x) ,otherwise

The Fourier transforms of the spatial functions in (100) are
2 _12

Ez2(a, d) = 1 [(t) + U2 (1)] (lOla)

2 _8

d- %.(a, d) = j k2 [ (a) + V2 (a)] (101b)

where
-w/2

l(a) f u(x) e dx

U2 = f u(x) ejax dxw/2

-w/2
S1 (a) = f v(x) ejax dx

V2(a) = f v(x)e dx.
w/2

Using the expressions given by (62) and (95) we obtain the following

coupled equations for the two current components

G11 (a, W)•x(a) + G1 2 (a, )-(jLa) = ?fi(a) + 'U2 (a) (102a)

G2 1 (a, )•x(c) + G2 2 (a. O)z(a) = V1 (a) + V2((a) (102b)
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where G and G are given by (97). Note that the two

equations in (102) actually contain six unknowns altogether. However,

four of the unknowns, viz., UP' U2' Vl' and V2 , can be eliminated from

these equations by using a technique that was outlined in Section 2.4.

As a first step we expand J and J in terms of known basisx z

functions J and J as follows:xn zn

M

J x(a) = I can 3xn (a) (103a)
n=l

N
J (a) = nd Wn(c. (103b)
z n znn1

The basis functions J (a) and 3' (at) must be chosen such that their
xn zn

inverse Fourier transforms are nonzero only on the strip -w/2 < x < w/2.

After substituting (103) into (102) we take the inner products with

the basis functions Jxn and J for different values of n. This yieldsznnzn

the matrix equation

1 ) N

n- mn n n mn n 1,2,:•'::.-- -n=l

(104a)

n (' M n K(2' 2 ) d = 0 m = 1, 2, N ( • N.
nZi mn n I~ mn n1,2

(104b)

where

00

K('1)mn = f (a)G(X, ) (105a)

K(1,2)n = xm (a) G 2 (a, ) (zn() da (105b)
-002

K2 (a) G2(a, a) x(a) d (805c)
Smn -00 zM 21o
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K(2,2)

mn = f 3 zm(a) G2 2 (a, 0) J zn() da. (105d)

An application of Parseval's theorem will verify that the right-hand

sides of (102) are indeed eliminated by this procedure. Using this

theorem we can show that

f J'xm() + u2(a)) da

1 i__ J.m(x) 2_ E,2X

2T-7r f 2 2 (x, d)] dx 0

The above relation is true since Jxm(x), the inverse transform of xm(a),

and Ez2 (x, d) are nonzero in the complementary regions of x.

The next step is to solve the simultaneous equation (104) for

the propagation constant 0, by setting the determinant of this set

of equations equal to zero and seeking the roots of the resulting

equation.

It may be of interest to note that the technique just described

is useful for solving the problem of the slot line (Itoh and Mittra,

1971b) which is another useful transmission line structure used in

microwave integrated circuits.
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IV. HIGHER-ORDER MODES

Until now we have restricted ourselves to the discussion of the

dominant mode in the microstrip transmission line. In this section

we will briefly take up the subject of higher-order modes that can

propagate in these lines. Although much has been written on the

characteristics of the dominant mode, relatively little has been

reported on the subject of higher-order modes.

Let us first consider the open microstrip line. Since the

geometry of this structure is an open one, its modal spectrum is

comprised of two parts - discrete and continuous. The discrete part

of the spectrum corresponds to a finite number of propagating modes

which are essentially surface-wave-type in nature. Since the

propagation constant $ for these modes is real and greater than the

free-space wavenumber k , they are referred to as slow waves. In

contrast, the continuous spectrum is associated with the radiated

field or the fast waves. As the frequency of operation is increased,

leaky modes or pseudomodes which are alternate representations of

portions of the continuous spectrum, can exist simultaneously with the

surface-wave-type modes. These leaky modes represent radiation losses,

and the use of the microstrip line becomes restricted when these

pseudomodes appear.

In addition to the leaky modes, there are higher-order, surface-wave-

type modes that also appear as the frequency of operation is increased.

The occurrence of these higher-order, surface-wave-type modes may

be heuristically explained as follows. If che center strip of the

open microstrip lines structure is removed the result is a conventional,

dielectric slab, surface-wave line supported by a conducting sheet.
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Such a surface-wave line supports the even TM and odd TE type of

mode (Collin, 1960). The insertion of the center strip perturbs

these surface waves, but their modified versions remain similar in

character to the dielectric slab modes. The existence of these

higher-order modes is undesirable and the use of the microstrip line

is typically restricted to frequencies below f the cutoff

frequency of the TE surface wave (Denlinger, 1971),which is given
1

by the formula

f = , c = velocity of light in vacuum.
4d/ir- - 1

Let us now turn to the problem of higher-order modes in a shielded

microstrip line (Figure 20). As expected, this closed waveguide

structure only supports an infinite number of discrete modes and

the propagation constants for these modes are obtained by solving the

characteristic equation derived in Section 3.2.

Figure 27 shows typical plots of the value of the determinant versus

the normalized propagation constant T (Mittra and Itob, 1971). The

curves for increasing frequencies are shown from (a) through (d). It is

evident that the number of zeros of the determinant increases with

increasing frequency indicating the appearance of higher-order modes.

Figure 28 presents the dispersion diagrams for both the dominant and

the higher-order modes, It should be mentioned that this mode spectrum

is not complete since only the E even- H odd type of modes are
z Z

exhibited in the figure. Calculation of the dispersion characteristics

of higher-order modes have also been carried out by Daly (1971) and

Kowalski and Pregla (1971). A comparative study of theve works reveals

that some disagreement exists between the results that are reported
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in the works referred to above. It appears that reliable experimental

work is necessary for resolving these discrepancies.
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V. LOSSES IN MICROSTRIP LINES

The discussion of the microstrip line thus far has been based on

the assumption that the losses are negligible. However, in practice,

losses are always present and it may be quite important to obtain a

quantitative estimate of these losses in order to reliably design the

microstrip line circuits. It will therefore be pertinent to include

here brief descriptions of two methods that have been found useful for

evaluating these losses. We restrict our attention to the dielc':tric

and ohmic skin losses only and assume that magnetic losses in the

substrate are either absent or negligible.

The analysis will be based on a perturbational approach which is

valid when the loss per unit length is small. Except for the case

when the substrate material is a semiconductor, the assumption that

the losses in the line are small is certainly valid for most practical

microstrip structures. The line loss can be quantitatively described

in terms of an attenuation constant a defined as

P(z) = P exp(-2az)0

(106)

P(O) = P0

where P(z) is the power transmittLI along the line at the distance

z from the origin. Letting a = ad + a c, i. e., identifying the total

attenuation as the sum of the contribution due to dielectric and

ohmic losses, we obtain the following relationships

dP/dz Pc + Pd
a= 2e(! ) z 2P(z) (nepers/m) (107a)

and
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P d Power loss in dielectric material (nepers/m)
d WP(z) 2 x Power transmitted

(107b)

Pc Power loss in conductors (nepers/m). (107c)
c ' 2P(z) 2 xPower transmitted

The perturbational analysis for loss calculation is based upon the

assumption that the field distribution in the structure is not

altered due to the presence of losses. Assuming further that the

dominant mode is quasi-TEM, the following formula may be written for

the two components of a(Yamashita and Atsuki, 1970)

ad = a d(VO 2 dxdy (108a)

2 ff vw(V) 2dxdy

f R i 2dX
asc s f 2  (108b)

2 ff vE(Vý)2dxdy

is =psv (108c)

where the double integrals are defined over the cross section and tle

line integral is taken around the center strip and along the ground

conductor surface. The various quantities appearing in (108) are

P5 = charge distribution on the conductors

= potential distributions

v = phase velocity (equal to the group velocity)

ad = conductivity of dielectric material

R = 4i/2%c = surface resistance of conductors.

The quantities ý, ps, and v in the above expression are calculated by

one of the methods presented in Section II with the assumption that

there is no loss in the microstrip line.
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Also, it has been assumed in writing (108) that ad and R ares

sufficiently small (ad << we; and R << Z, the characteristic impedance).

An alternative approach has been followed by Pucel, Mass6, and

Hartwig (1968) who have developed formulas that express ac and a d in

terms of structural parameters of the guide and the filling factor

iatroduced by Wheeler (1965). The expression for ad' the contribution

due to dielectric losses, is given by

a d 4.34 a (dB/cm) (109)

where q is the filling factor and e eff is the effective dielectric

constant. These quantities were defined earlier in Section 2.2. The

factor 4.34 represents the conversion of nepers into decibels.

Equation (109) is applicable to an open microstrip line with a

single layer dielectric substrate below the center strip and free

space above.

To obtain the ohmic attenuation constant ac' Pucel et al. used

a technique based on the so-called "incremental inductance rule"

(Wheeler, 1942). This rule expresses the series surface resistance

R per unit length in terms of that part of the total inductances

per unit length which is attributable to the skin effect, i. e., the

inductance Li produced by the magnetic field within the conductors.

It is well known that the surface impedance

Zs =Rs +jXs (110)

has a real part R (surface resistance) which is equal to thes

imaging part X , where
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X wL.. (111)s 1

According to Wheeler, L. can be inferred from the external ind-ictance

L per unit length as the incremental increase in L caused by ai

incremental recession of all metallic walls carrying a skin current

(see Figure 29). The amount of recession is equal to half the skin

depth 6 = 72-/wua . An assumption underlying this rtile Is that the
c

radius of curvature and the thickness of the conductors exposed to

the electric field be greater than the skin depth - prei-.rably several

skin depths. According to Wheeler, we have

L. = mL m (112a)S m •o mn

jjan 2
R Ro nm (112b)

where the derivative aL/an denotes the derivative of L with respectm

to the incremental recession of wall m, n the noimal direction

to this wall, and Rsm = m 6 cm/2 is the surface resistance

of wall m. Thus, from the definition (107c)
l2R

1 (113)
c 21112Z 2po m sm Z--m

where Z is the characteristic impedance of the micrestrip line

calculated under the quasi-TEM approximation for the lossless case,

and I is the total current per conductor,

We assume that the inductance per unit length for the inhomogeneous

dielectric case (microstrip line) is approximately the same as that

of the unloaded TEM line. This assumption implies that the stored

magnetic energy is not affected by the presence of the nonmagnctic
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dielectric substrate. This is a reasonable assumption as verified

experimentally by Pucel, Mass6, and Hartwig (1968).

The remaining task Is to derive the expression for the inductance

L of the lossless line. From the approximate results by Wheeler (1965)

we get

L Uo 8h + 1 wh' 2 + w/h < 2 (114a)

L = 0 1 w/h > 2 (114b)2 w' +w+ - kn[ 2re + 0.94)]

where

w? w + tk n ( 4Tr + 1) w/h _< i/2Tr (115a)

(2t/h - w/h, 1/27)

w W+ "on ( n + 1) w/h > 1/21r. (115b)

Assuming that the surface resistance of both the center strip and

the ground plane are identical to Rs, we obtain the following result

for the ohmic attenuation constant

*c~ Zh 8.4_L2___ L+ hI8.64 1 - ( 4w +1) - 1-t/w

R S4w V + t/4[w

(116a)
w/h < 1/27r

*Rc 8. 1 2(w) Il+_+h 1+ t/h
-- Itn

(116b)
1/2n < w/h < 2

c Zh 8.68 W' w'/+h + h
R- + 7 2w 9) + ?w 11I

w' 2 '

Rs w +- I£n[2we(-, + w 0.94] w + 0.94 4 w
5 Tr 2h (116c)

n ) + t/h2h w/h > 2
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where a iý in dB/cm. From the above expression it is evidentc

that for a fixed characteristic impedance which implies fixed t, w,

h ratio and c , a decreases inversely with the substrate thicknessr c

h, and increases with the square root of the frequency. The latter

results from the fact that R -is proportional to the square root ofS

the frequency.

Figure 30 shows some numerical results calculated from (116).

Figure 31 shows the plots of the results for ac obtained by Yamashita

and Atuki (1970) using Equation (1081b). In their paper a comparison

was made with the curves in Figure 30. Also, the dielectric attenuation

constant ad was calculated and compared with the experimental results

by Hyltin (1965). These are plotted in Figure 32 (Yamashita and Atsuki, 1970).

It is evident that the agreement between the theoretical and experimental

results is quite good.

The total attenuation constant a was measured by Pucel, Mass6,

and Hartwig (1968) for a practical microstrip line. The results

for the case of a rutile substrate are reproduced in Figure 33.

Because of the scatter in measured data points, a curve was drawn

through the points by "eye-ball" averaging where possible. The

agreement of the experimental data with theory appears to be quite

good. The sharp upturn in Figure 33c between 5 and 6 GHz was claimed

to be caused by the excitation of the TE surface wave which produces

a loss through propagation of energy out of the edges of tne substrate.

This mode has a cutoff frequency fc = c/(4h)Vic - 1 1 5.8 GHz.
c ~r '

Indeed, Pucel et al. observed radiation from the sides of the slab in

and about this frequency range.
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Figure 30. Theoretical conductor attenuation factor of microstrip as a
function of w/h, calculated by Pucel et al. (1968).
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Figure 31. The attenuation constant due to the conductor surface resistance

of the microstrip line. [The other theory results are from
Pucel et al. (1968).]
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Figure 32. The attenuation constant versus the conductivity of the
dielectric substrate of the microstrip line. E* = 11.7.
[The experimental results are those of Hyltin (1965).]
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VI. RADIATION AND END LOADING

In the previou sections we have concentrated our attention on

infinitely long microstrip lines. In practice, however, the line

sections are necessarily finite in extent. Thus, it is necessary

in practical designs to evaluate the effects of discontinuuities or

junctions introduced in uniform microstrip lines. Typical discontinuities

of interest are T-junctions, gap in the center of the microstrip,

truncated microstrip sections, etc. In this section we discuss the

open-ended microstrip stub as a typical example of such junction

problems.

The open-ended microstrip stub is frequently used as a component

for a filter or a matching network. An ideal lossless stub, with a

true open circuit at the end, appears as a pure susceptance at the

input junction where it is connected to the main line. However,

due to radi' ion and fringing effects that are always present, a true

open cit. is never realized at the end of the stub. The effect

of the radiation can be represented by a finite conductance G, whereas

the fringing effects as well as the effect of higher-order modes

generated at the end of the stub may be described by a shunt susceptance

B. The combined effect of these is a finite, complex terminating

impedance at the end of the stub. This and the distributed losses

in the stub (see Section V) cause the input admittance as seen from

the junction of the stub to the main line to be complex. In order to

evaluate this input admittance accurately in the presence of the end

effects just described, it is necessary to calculate the load

admittance at the end of the stub. In the following sections we present
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a number of techniques for evaluating this load admittance.

6.1 Radiation Conductance

The problem of radiation at the truncated end of the microstrip

line has been considered by several workers (Lewin, 1960; Denlinger,

1969; Sobol, 1971). Here we follow a method introduced by Sobol (1971)

for calculating the equivalent conductance of an open-ended stub. The

* geometry under consideration is shown in Figure 34. In addition to

the quasi-TEM approximation the following assumptions will be made:

1. h/X << 1;

2, The field distortion at the end of the line is negligible;

3. The center strip is infinitely thin;

4. Only the effect of the dom-inant mode needs to be considered

at the discontinuity.

Itis also assumed that the x component of the electric field

E is a constant, equal to E in the region Izi - w/2 and lxi, h/2X 0

and that it is identically zero outside of this region. The fringing

effect of the field is introduced via the use of the effective

dielectric constant reff defined by Wheeler (1965) and discussed

in Section 2.2. The problem of calculating the effect of radiation

from the aperture plane y = 0 may be conveniently attacked by first

replacing the aperture electric field by a sheet of conceptual magnetic

current M. The magnetic current can in turn be used to calculate the

magnetic radiation vector L. The only nonzero component of the

magnetic current turns out to be M , and the corresponding magnetic

radiation vector L0 is given by
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w/2

f-hsin E expXj reff z cos O]dz (117)
-w/2

where X is the free-space wavelength and 8 is measured from the z-
0

axis. The total radiated power W, and hence G, is given by

7 2r
W G(hEo =ý ]L12 sin 6 dý de

h 0  2 sn (118)
0 0

where
120Ti

=/reff

It should be noted that we have made the assumption that h/X << 1 in
0

deriving the above expression for W.

The radiation conductance G is explicitly written as

G I( reff) (119)
240n o

where sin 2 (T reff ) 3

00

Ii Co 2 o 0 sin .(20

It can be shown that I, and hence G, varies as (w/\ 2 for w/)X <e 1
0 0

as w/A for w/o >> 1. For instance, for Tr W/o much less than
0 0 reeff wko

unity

3/2

G %(e reff) (W/ 2 (121)180 Xol

This approximation is quite accurate for (w / Creff less than 0.5.

The asymptotic behaviors of G with respr:t to w/)° are consistent

with the ones reported by Lewin (1960) and Marcuvitz (1951).
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The driving-point admittance of the stub can be calculated in

terms of the radiation loading G, susceptance B due to end effect,

and distributed line losses expressed in terms of Q (unloaded Q).
0

The real part g, of the driving-point admittance, normalized to the

stub characteristic admittance, is approximated by

2 2 2 2
1 6 sec - tan 6 + b tan O + b (0 sec e + tan e) + g sec26

1 2Qo0 (1 - b tan 9)2

= d + gr (122)

where g and b are the normnrlized values of G and B, respectively,

and 0 is the electrical length of the stub. The niormalized conductance

gd results from the distributed losses and gr, the radiation losses.

The ratio of the radiation loss P rad/Ptotal for a 50--Q line on

an aluminum substrate is plotted in Figure 35 as a function of the

stub length. It is evident that the radiation losses play an important

role for a short stub, The effective length of the stub used in

these calculations is obtained by extending it by 0.4h, The

justification for this approximation appears in Section 6.2.

For a quarter-wave resonator the ratio of the radiation loss

Prad and the distributed loss P dis is given by

Prrad Qo0Z(a reff) 3/2 (Wds) 2(

grdo rf . (123)
~dist 45, i + 1.6

Figure 36 shows this ratio as a function of frequency and c r' the

dielectric constant of the substrate. The results agree very well

with the data presented by Denlinger (1969).
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6.2 Edge Susceptance

We next turn to the calculation of the lumped loading susceptance

at the truncated edge of the microstrip. The susceptance is often

described in terms of an edge capacitance which is represented by a

hypothetical extension At of the microstrip. The range of At is

approximately 0.2 to 0.5 of the substrate thickness (Napoli and Hughes,

1971; James and Tse, 1972). A simple theory for infinitely wide plates

indicates an extension of the length by 0.44h.

Recently a number of attempts have been reported for calculating

the edge capacitance by solving the equivalent static problem. Figure

37 shows a finite section of microstrip line of width w and length Z.

The edge capacitance for a semi-infinite line is calculated by first

obtaining the capacitance for a finite section of the line and subtracting

from it the contribution of the uniform line. The latter is equal to

the linae capacitance for unit length multiplied by k, the length of

the line section. The excess capacitance is then associated with the

fringe effects at the end. In the following, two methods will be

presented. The first method is based on the conventional matrix equation

approach. On the other hand, in the second method the analysis will be

done in the spectral domain.

6.2.1 Matrix method

We begin with the three-dimensional Poisson's equation

S2(x , Z) 1 P(x, z) 6(y)
0 (124)

p(x, z)= 0, Ixl > w/2, jzj > Z/2.

The Green's function G may be defined as the potential at (x, y, z) due to

the unit charge at (x0 ,yoz 0 ). Applying the superposition principle, it is
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(d -b) + /(cc- a) 2 + (d -b)+K

fi(a, b; c, d) (c- a) kn n
(d + Ad - b) + I(c_- a) 2 + (d + Ad - b)2+K2

S~n

(d + Ad - b) + /(c+Ac-a) 2+(d+Ad-b) 2+K2

gn/(a, b; c, d) c(c + +c a) -n n

(d - b) + (c + Ac a)2 (d, b) 2+K2
n

ýn(a, b; c, d) (c - a)(d - b)

K /(c - a)2 + (d -b)2 + K2
n n

K = (2n - 2)h
n

g - 1

k= r
e +1
r

Equation (126) is now solved for the unknowns a.. After lettingJ

V. 1 for all i = 1, • • • N, the total capacitance of the rectangular

microstrip section of length k is given by

N
C(M) = E o., (129)

j=l J

The value of the fringe capacitance of the open-circuited microstrip

is given by

1
Cex =- lim [C() - Cu] 30)

where C is the line capacitance per unit length of the infinitelyu

long microstrip line, and the factor 1/2 accounts for both ends of

the rectangular section. The limit appearing in Equation (130) is

numerically computed as follows. The total capacitance for a rectangular

section is computed for the sequence of increasing values of t, until

convergence is reached for the computed value of the excess capacitance

C.
ex
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easily shown that Z/2 w/2

4(X, y, Z) = f f G(x, y, z; xO, 0, zo) P(x P z )dx dz

0 0 0 0 0 0
-, /2 -w/2 (125)

In the method due to Farrar and Adams (1971, 1972) the charge

distribution p(x, z) is calculated by numerically solving

Equation (125) in the manner described below. The finite strip is

subdivided into N subsections of elemental area AS.. It is assumedJ

that the charge distribution a. is uniform in a subsection.

Equation (125) is then discretized under this approximation and

yields the matrix equation

N

Di a ,= i = 1, 2, p N (126)

J = l- i 1(

where Di', the potential at subsection AS. due to a uniform charge

density of maginitude unity on ASP, is given by

D = G(x., 0, z ; x 0, z) xx z (127)
ij V

The explicit form of D has been derived by using the exact expression
ij

for the potential due to a uniformly charged rectangular plate, and

applying the imaging technique successively across the dielectric

boundary and the ground plate to generate an infinite series of

images. The final expression for D.. is1J

0 kn-l (_)n+l
D = I - {f (xi) yi; x., y.) + g (xi, yi; x., y)

n~ C\ CJn 11 3 n1 1

+ fn(Yi, xi; y., xj) + gn(Yi, xi; yj, xj) - K n[tan-ln(XiYi;xjpy )

+ tan- Cn (xi, yi; xj + Axj, yj + by) - tan-l n(xi, Yi; xj, yj+Ayj)

- tan- nn(xi) Yi; xj + Ax, y.)]} (128)

where

105



S?;' •-i•-- -, 2' -- -i - -.• • _---

6.2.2 Fourier transform method

An alternative approach to the edge capacitance may be-developed

by extending the Fourier transioim technique presented in Section 2.4

(Itoh, Mittra, and Ward, 1972). The extension is necessary since we

are now dealing with a two-d6mensional problem-as opposed to a one-

dimensional case digcussed in Section 2.4.

The method proceeds-by d~fintng th6 two-dimensionalFourier

transform of the potential function via the equation

00

�(�Y y, 8)= jf j ý(x, y, z) ej '+) dx cz. (131)

00 -C

Also, taking the Fourier transform of (124) we obtain

d2
d 2 2 2 rk \' (32[ + 8)) (, Y, 8) - -P •, 8)6(Y) (132)
dy 2oX£

where p is the transform of the charge distribution

Z/2 w/2

P(a, 8) f / P(x, z) e3 (ex+8z) dx dz. (133)

-_12 -W/2

In view of the boundary conditions at y -h and at y = o, the form of

the solution of Equation (132) is taken to be

A(a, 8) sinh 22+82 y -h < y < 0

Y(c, y, 8) = (134)

B(c, a) exp 1-f/0}+ 82 y > O.

By proceeding in exactly the same manner as in Section 2.4 and applying

the boundary ccnditions on the strip, we obtain after eliminating A(c, 8)

and B(c, 8) the following equation for the transform of the charge

distribution

G(c, B) P(a, B) =(a 0, 8) (135)
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where

G(a, ) . (136)

2 a+ [1+ coth + h]0o r

Note that G is the transform of Green's function and that the algebraic

product in the left-hand side of (135) corresponds to the surface

convolution integral in (125). This feature is very useful in the

actual numerical calculation because the computation of the surface

convolution integral is a time consuming operation.

Equation (135) is transformed into a matrix equation via the

application of Galerkin's method, which is similar to that discussed

in Section 2.4. The matrix equation may be written as

N
bm mn c n m =, 2, •• N (137)R n=l m

where

Kmn =Rfaf m(a, 8) )(a, (a, 8) da da

-CO -00

00 CO ý / 2 w / 2
b Pm(a, 8) a, 0, 8) da dJ= x, z)dx dz.

-0 -0 -k2 -w/2

The functions pn are the basis functions of p(a, 8) and is the

transform of the potential on the strip. p n(x, z) is the inverse

transform of , 8). The total charge on the strip is given by
Pn

N 4/2 w/2 N
C(o) = c f F n(x, z) dx dz = 2n I c bn

n=l n
-Z/2 -w2

(138)

Figure 38 shows the fringe capacitance of the open-circuited micro-

strip line calculated by the two methods presented in this section.
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The values of the fringe capacitance can in turn be used to compute

the loading susceptance due to the end discontinuity.
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VII. CONCLUSIONS

In the preceding sections we have discussed a number of features

of microstrip-type transmission lines for microwave integrated

circuitry. Approximate as well as rigorous analyses for the

characteristics of the infinitely long microstrip lines have been

presented. Brief discussion of some practical problems encountered

in the actual design, such as computation of losses, radiation and

junction effects, etc., has been included.

Although much has been written on the subject of microstrip

lines, there still remain a number of theoretical as well as

practical problems yet to be solved. Some of these problems include:

(i) comprehensive analysis of higher-order modes; (ii) complex junction

problems; (iii) radiation from a uniform section of open microstrip

line; and so on. It is felt that a simultaneous development of both

the theoretical and experimental techniques will be needed to

successfully resolve these problems.
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